Nemisis

Nemesis (hypothetical star)

From Wikipedia, the free encyclopedia
Not to be confused with the hypothetical planet Tyche.

Artist’s conception of Nemesis as a red dwarf seen from a nearby debris field with the Sun visible in the center.

Nemesis is a hypothetical hard-to-detect red dwarf star,[1] white dwarf star[2][dubious – discuss] or brown dwarf,[3] originally postulated in 1984 to be orbiting the Sun at a distance of about 95,000 AU (1.5 light-years),[3] somewhat beyond the Oort cloud, to explain a perceived cycle of mass extinctions in thegeological record, which seem to occur more often at intervals of 26 million years.[4][3] As of 2011, over 1300 brown dwarfs have been identified and none of them are inside the Solar System.[5]

More recent theories suggest that other forces, like close passings of other stars, or the angular effect of the galactic gravity plane working against the outer solar orbital plane, may be the cause of orbital perturbations of some outer solar system objects.[6] In 2011, Coryn Bailer-Jones did an analysis of craters on the surface of the Earth and reached the conclusion that the earlier findings of simple periodic patterns (implying periodic comet showers dislodged by a hypothetical Nemesis star) to be statistical artifacts, and found that the crater record shows no evidence for Nemesis.[7] However, in 2010, Melott & Bambach found strong evidence in the fossil record confirming the extinction event periodicity originally claimed by Raup & Sepkoski in 1984, but at a higher confidence level and over a time period nearly twice as long.[8] The Infrared Astronomical Satellite (IRAS) failed to discover Nemesis in the 1980s. The 2MASS astronomical survey, which ran from 1997 to 2001, failed to detect a star, or brown dwarf, in the solar system.[9]

Using newer and more powerful infrared telescope technology, able to detect brown dwarfs as cool as 150 Kelvin out to a distance of 10 light-years from the sun,[10] preliminary results from the Wide-field Infrared Survey Explorer (WISE survey) have not, to date, detected Nemesis, although the analysis of the full survey is not yet complete.[11] In 2011, David Morrison, a senior scientist at NASA known for his work in risk assessment of near Earth objects, has written that confidence in the existence of an object like Nemesis has drastically diminished, since it is expected it should have been detected in infrared sky surveys before now.[12][13] However other scientists[who?][when?] have observed that there are hundreds of red stars recorded in sky surveys with no parallax information on their actual distance from the solar system. Until parallax and proper motion and measurements are completed, there is no way to ascertain the distance of these red stars (whether they are nearby red dwarfs or distant red giants).[citation needed][dubious – discuss]

Contents

[hide]

[edit]Claimed periodicity of mass extinctions

In 1984, paleontologists David Raup and Jack Sepkoski published a paper claiming that they had identified a statistical periodicity in extinction rates over the last 250 million years using various forms of time series analysis.[4] They focused on the extinction intensity of fossil families of marine vertebratesinvertebrates, and protozoans, identifying 12 extinction events over the time period in question. The average time interval between extinction events was determined as 26 million years. At the time, two of the identified extinction events (Cretaceous-Tertiary and Late Eocene) could be shown to coincide with large impact events. Although Raup and Sepkoski could not identify the cause of their supposed periodicity, they suggested a possible non-terrestrial connection. The challenge to propose a mechanism was quickly addressed by several teams of astronomers.

In 2010, Melott & Bambach re-examined the fossil data, including the now-improved dating, and using a second independent database in addition to that Raup & Sepkoski had used. They found evidence for a signal showing an excess extinction rate with a 27 million year periodicity, now going back 500 million years, and at a much higher statistical significance than in the older work.[8] The change from 26 to 27 million years is expected based on a 3% “stretch” in the geological timescale since the 1980’s.

[edit]Development of the Nemesis hypotheses

Two teams of astronomers, Daniel P. Whitmire and Albert A. Jackson IV, and Marc DavisPiet Hut, and Richard A. Muller, independently published similar hypotheses to explain Raup and Sepkoski’s extinction periodicity in the same issue of the journal Nature.[14][15] This hypothesis proposes that the Sun may have an undetected companion star in a highly elliptical orbit that periodically disturbs comets in the Oort cloud, causing a large increase of the number of comets visiting the inner Solar System with a consequential increase of impact events on Earth. This became known as the “Nemesis” or “Death Star” hypothesis.

If it does exist, the exact nature of Nemesis is uncertain. Muller suggests that the most likely object is a red dwarf with an apparent magnitude between 7 and 12,[16] while Daniel P. Whitmire and Albert A. Jackson argue for a brown dwarf.[14] If a red dwarf, it would exist in star catalogs, but it would only be confirmed by measuring its parallax; due to orbiting the Sun it would have a low proper motion and would escape detection by older proper motion surveys that have found stars like the 9th-magnitude Barnard’s star. (The proper motion of Barnard’s star was detected in 1916.)[17] Muller expects Nemesis to be discovered by the time parallax surveys reach the 10th magnitude.[18]

Muller, referring to the date of a recent extinction at 11 million years before the present day, posits that Nemesis has a semi-major axis of about 1.5 light-years (95,000 AU)[16] and suggests it is located (supported by Yarris, 1987) near Hydra, based on a hypothetical orbit derived from original apogees of a number of atypical long-period comets that describe an orbital arc meeting the specifications of Muller’s hypothesis. Richard Muller’s most recent paper relevant to the Nemesis theory was published in 2002.[16] In 2002, Muller speculated that Nemesis was perturbed 400 million years ago by a passing star from a circular orbit into an orbit with an eccentricity of 0.7.[18]

[edit]Orbit of Sedna

The planetoid Sedna has an extra-long and unusual elliptical orbit around the Sun,[3] ranging between 76 and 975 AU. Sedna’s orbit is estimated to last between 10.5 and 12 thousand years. Its discoverer,Michael Brown of Caltech, noted in a Discover magazine article that Sedna’s location seemed to defy reasoning: “Sedna shouldn’t be there,” said Brown. “There’s no way to put Sedna where it is. It never comes close enough to be affected by the Sun, but it never goes far enough away from the Sun to be affected by other stars.”[19] Brown therefore postulated that a massive unseen object may be responsible for Sedna’s anomalous orbit.[3]

Brown has stated that it is more likely that one or more non-companion stars, passing near the Sun billions of years ago, could have pulled Sedna out into its current orbit.[19] In 2004, Kenyon forwarded this explanation after analysis of Sedna’s orbital data and computer modeling of possible ancient non-companion star passes.[6]

[edit]Past, current and pending searches for Nemesis

Searches for Nemesis in the infrared are important because cooler stars shine in infrared light. The University of California’s Leuschner Observatory failed to discover Nemesis by 1986.[20] The Infrared Astronomical Satellite (IRAS) failed to discover Nemesis in the 1980s. The 2MASS astronomical survey, which ran from 1997 to 2001, failed to detect a star, or brown dwarf, in the solar system.[3] If Nemesis exists, it may be detected by Pan-STARRS or the planned LSST astronomical surveys.

In particular, if Nemesis is a red dwarf star or a brown dwarf, the WISE mission (an infrared sky survey that covered most of our solar neighborhood in movement-verifying parallax measurements) is expected to be able to find it.[3] WISE can detect 150 Kelvin brown dwarfs out to 10 light-years. But the closer a brown dwarf is the easier it is to detect.[10] Preliminary results of the WISE survey were released on 14 April 2011.[21] The final release of analyzed results is to be released in March 2012.

Calculations in the 1980’s suggested that a Nemesis object would have an irregular orbit due to perturbations from the galaxy and passing stars. The Melott & Bambach work[8]shows an extremely regular signal, inconsistent with the expected irregularities in such an orbit. Thus, while supporting the extinction periodicity, it appears to be inconsistent with the Nemesis hypothesis, though of course not inconsistent with other kinds of dark stellar companions. Other recent scientific analysis no longer supports the idea that extinctions on Earth happen at regular, repeating intervals, and thus, the Nemesis hypothesis is no longer needed.[22]

[edit]Cultural references

  • Nemesis, a book about a civilization affected by an unknown additional star, by Isaac Asimov.

[edit]See also